7.8 Videos Guide

7.8a

Types of improper integrals

o Infinite interval:
$$\int_{-\infty}^{a} f(x) dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) dx$$
 or $\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$

o Infinite discontinuity: $\int_a^b f(x) dx$, where there is $c \in [a, b]$ such that $\lim_{x\to c} f(x) = \pm \infty$. In this case we have

$$\int_{a}^{b} f(x) \, dx = \lim_{t \to c^{-}} \int_{a}^{t} f(x) dx + \lim_{t \to c^{+}} \int_{t}^{b} f(x) dx$$

Exercises:

Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

• $\int_{1}^{\infty} \frac{e^{-1/x}}{x^2} dx$ • $\int_{0}^{\infty} \sin \theta \ e^{\cos \theta} \ d\theta$

7.8b

Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

 $\int_{2}^{\infty} \frac{dv}{v^{2}+2v-3}$ $\int_{0}^{1} \frac{dx}{\sqrt{1-v^{2}}}$

7.8c

Exercise:

• For what values of p is the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ convergent?

7.8d

Theorem (statement):

• Comparison Theorem: If $f(x) \ge g(x) \ge 0$ (both continuous) for $x \ge a$, then

a) If $\int_a^\infty f(x) \ dx$ is convergent, then so is $\int_a^\infty g(x) \ dx$ b) If $\int_a^\infty g(x) \ dx$ is divergent, then so is $\int_a^\infty f(x) \ dx$

Exercise:

Use the Comparison Theorem to determine whether the integral is convergent or divergent.

• $\int_{1}^{\infty} \frac{1+\sin^2 x}{\sqrt{x}} dx$